Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pediatr Allergy Immunol ; 34(12): e14060, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38146118

RESUMEN

BACKGROUND: A proportion of the convalescent SARS-CoV-2 pediatric population presents nonspecific symptoms, mental health problems, and a reduction in quality of life similar to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) and long COVID-19 symptomatic. However, data regarding its clinical manifestation and immune mechanisms are currently scarce. METHODS: In this study, we perform a comprehensive clinical and immunological profiling of 17 convalescent COVID-19 children with post-acute COVID-19 sequelae (PASC) manifestation and 13 convalescent children without PASC manifestation. A detailed medical history, blood and instrumental tests, and physical examination were obtained from all patients. SARS-CoV-2 reactive T-cell response was analyzed via multiparametric flow cytometry and the humoral immunity was addressed via pseudovirus neutralization and ELISA assay. RESULTS: The most common PASC symptoms were shortness of breath/exercise intolerance, paresthesia, smell/taste disturbance, chest pain, dyspnea, headache, and lack of concentration. Blood count and clinical chemistry showed no statistical differences among the study groups. We detected higher frequencies of spike (S) reactive CD4+ and CD8+ T cells among the PASC study group, characterized by TNFα and IFNγ production and low functional avidity. CRP levels are positively correlated with IFNγ producing reactive CD8+ T cells. CONCLUSIONS: Our data might indicate a possible involvement of a persistent cellular inflammatory response triggered by SARS-CoV-2 in the development of the observed sequelae in pediatric PASC. These results may have implications on future therapeutic and prevention strategies.


Asunto(s)
COVID-19 , Síndrome Post Agudo de COVID-19 , Humanos , Niño , SARS-CoV-2 , Citocinas , Linfocitos T CD8-positivos , Calidad de Vida , Progresión de la Enfermedad , Disnea
2.
Front Immunol ; 14: 1236374, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37946732

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused millions of COVID-19 cases and deaths worldwide. Severity of pulmonary pathologies and poor prognosis were reported to be associated with the activation non-virus-specific bystander T cells. In addition, high concentrations of the macrophage migration inhibitory factor (MIF) were found in serum of COVID-19 patients. We hypothesized that these two pathogenic factors might be related and analyzed the expression of receptors for MIF on T cells in COVID-19. T cells from PBMCs of hospitalized patients with mild and severe COVID-19 were characterized. A significantly higher proportion of CD4+ and CD8+ T cells from COVID-19 patients expressed CD74 on the cell surface compared to healthy controls. To induce intracellular signaling upon MIF binding, CD74 forms complexes with CD44, CXCR2, or CXCR4. The vast majority of CD74+ T cells expressed CD44, whereas expression of CXCR2 and CXCR4 was low in controls but increased upon SARS-CoV-2 infection. Hence, T cells in COVID-19 patients express receptors that render them responsive to MIF. A detailed analysis of CD74+ T cell populations revealed that most of them had a central memory phenotype early in infection, while cells with an effector and effector memory phenotype arose later during infection. Furthermore, CD74+ T cells produced more cytotoxic molecules and proliferation markers. Our data provide new insights into the MIF receptor and co-receptor repertoire of bystander T cells in COVID-19 and uncovers a novel and potentially druggable aspect of the immunological footprint of SARS-CoV-2.


Asunto(s)
COVID-19 , Humanos , Diferenciación Celular , Receptores Inmunológicos , SARS-CoV-2
3.
BMC Infect Dis ; 23(1): 818, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37993788

RESUMEN

Cross-reactive cellular and humoral immunity can substantially contribute to antiviral defense against SARS-CoV-2 variants of concern (VOC). While the adult SARS-CoV-2 cellular and humoral immunity and its cross-recognition potential against VOC is broadly analyzed, similar data regarding the pediatric population are missing. In this study, we perform an analysis of the humoral and cellular SARS-CoV-2 response immune of 32 convalescent COVID-19 children (children), 27 convalescent vaccinated adults(C + V+) and 7 unvaccinated convalescent adults (C + V-). Similarly to adults, a significant reduction of cross-reactive neutralizing capacity against delta and omicron VOC was observed 6 months after SARS-CoV-2 infection. While SAR-CoV-2 neutralizing capacity was comparable among children and C + V- against all VOC, children demonstrated as expected an inferior humoral response when compared to C + V+. Nevertheless, children generated SARS-CoV-2 reactive T cells with broad cross-recognition potential. When compared to V + C+, children presented even comparable frequencies of WT-reactive CD4 + and CD8 + T cells with high avidity and functionality. Taking into consideration the limitations of study - unknown disease onset for 53% of the asymptomatic pediatric subjects, serological detection of SARS-CoV-2 infection-, our results suggest that following SARS-CoV-2 infection children generate a humoral SARS-CoV-2 response with neutralizing potential comparable to unvaccinated COVID-19 convalescent adults as well a sustained SARS-CoV-2 cellular response cross-reactive to VOC.


Asunto(s)
COVID-19 , SARS-CoV-2 , Adulto , Niño , Adolescente , Humanos , Inmunidad Celular , Linfocitos T CD8-positivos , Inmunidad Humoral , Anticuerpos Antivirales , Anticuerpos Neutralizantes
4.
Sci Rep ; 13(1): 10501, 2023 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-37380654

RESUMEN

It has recently been shown that von Willebrand factor (VWF) multimers contribute to immunothrombosis in Coronavirus disease 2019 (COVID-19). Since COVID-19 is associated with an increased risk of autoreactivity, the present study investigates, whether the generation of autoantibodies to ADAMTS13 contributes to this finding. In this observational prospective controlled multicenter study blood samples and clinical data of patients hospitalized for COVID-19 were collected from April to November 2020. The study included 156 individuals with 90 patients having confirmed COVID-19 of mild to critical severity. 30 healthy individuals and 36 critically ill ICU patients without COVID-19 served as controls. ADAMTS13 antibodies occurred in 31 (34.4%) COVID-19 patients. Antibodies occurred more often in critically ill COVID-19 patients (55.9%) than non-COVID-19 ICU patients and healthy controls (5.6% and 6.7%; p < 0.001), respectively. Generation of ADAMTS13 antibodies in COVID-19 was associated with lower ADAMTS13 activity (56.5%, interquartile range (IQR) 21.25 vs. 71.5%, IQR 24.25, p = 0.0041), increased disease severity (severe or critical in 90% vs. 62.3%, p = 0.019), and a trend to higher mortality (35.5% vs. 18.6%, p = 0.077). Median time to antibody development was 11 days after first positive SARS-CoV-2-PCR specimen. Gel analysis of VWF multimers resembled the constellation in patients with TTP. The present study demonstrates for the first time, that generation of ADAMTS13 antibodies is frequent in COVID-19, associated with lower ADAMTS13 activity and increased risk of an adverse disease course. These findings provide a rationale to include ADAMTS13 antibodies in the diagnostic workup of SARS-CoV-2 infections.


Asunto(s)
Autoanticuerpos , COVID-19 , Humanos , Enfermedad Crítica , Estudios Prospectivos , Factor de von Willebrand , SARS-CoV-2 , Proteína ADAMTS13
5.
Front Microbiol ; 14: 1196721, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37333646

RESUMEN

The role of adaptive SARS-CoV-2 specific immunity in post-acute sequelae of COVID-19 (PASC) is not well explored, although a growing population of convalescent COVID-19 patients with manifestation of PASC is observed. We analyzed the SARS-CoV-2-specific immune response, via pseudovirus neutralizing assay and multiparametric flow cytometry in 40 post-acute sequelae of COVID-19 patients with non-specific PASC manifestation and 15 COVID-19 convalescent healthy donors. Although frequencies of SARS-CoV-2-reactive CD4+ T cells were similar between the studied cohorts, a stronger SARS-CoV-2 reactive CD8+ T cell response, characterized by IFNγ production and predominant TEMRA phenotype but low functional TCR avidity was detected in PASC patients compared to controls. Of interest, high avidity SARS-CoV-2-reactive CD4+ and CD8+ T cells were comparable between the groups demonstrating sufficient cellular antiviral response in PASC. In line with the cellular immunity, neutralizing capacity in PASC patients was not inferior compared to controls. In conclusion, our data suggest that PASC may be driven by an inflammatory response triggered by an expanded population of low avidity SARS-CoV-2 reactive pro-inflammatory CD8+ T cells. These pro-inflammatory T cells with TEMRA phenotype are known to be activated by a low or even without TCR stimulation and lead to a tissue damage. Further studies including animal models are required for a better understanding of underlying immunopathogensis. Summary: A CD8+ driven persistent inflammatory response triggered by SARS-CoV-2 may be responsible for the observed sequelae in PASC patients.

8.
Front Immunol ; 13: 1031254, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389833

RESUMEN

Emerging variants of concern (VOC) raise obstacles in shaping vaccination strategies and ending the pandemic. Vaccinated SARS-CoV-2 convalescence shapes the current immune dynamics. We analyzed the SARS-CoV-2 VOC-specific cellular and humoral response of 57 adults: 42 convalescent mRNA vaccinated patients (C+V+), 8 uninfected mRNA vaccinated (C-V+) and 7 unvaccinated convalescent individuals (C+V-). While C+V+ demonstrated a superior humoral SARS-CoV-2 response against all analyzed VOC (alpha, delta, omicron) compared to C-V+ and C+V-, SARS-CoV-2 reactive CD4+ and CD8+ T cells, which can cross-recognize the alpha, delta and omicron VOC after infection and/or vaccination were observed in all there groups without significant differences between the groups. We observed a preserved cross-reactive C+V+ and C-V+ T cell memory. An inferior humoral response but preserved cross-reactive T cell memory in C+V- compared to C+V+ was observed, as well as an inferior humoral response but preserved cross-reactive T cell memory in C+V- compared to C-V+. Adaptive immunity generated after SARS-CoV-2 infection and vaccination leads to superior humoral immune response against VOC compared to isolated infection or vaccination. Despite the apparent loss of neutralization potential caused by viral evolution, a preserved SARS-CoV-2 reactive T cell response with a robust potential for cross-recognition of the alpha, delta and omicron VOC was detected in all studied cohorts. Our results may have implications on current vaccination strategies.


Asunto(s)
COVID-19 , Inmunidad Humoral , Adulto , Humanos , SARS-CoV-2 , Convalecencia , COVID-19/prevención & control , Anticuerpos Antivirales , Vacunación , ARN Mensajero
9.
Transplant Proc ; 54(6): 1455-1464, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35489983

RESUMEN

BACKGROUND: Immune responses to seasonal endemic coronaviruses might have a pivotal role in protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Those SARS-CoV-2-crossreactive T cells were recently described in immunocompetent individuals. Still, data on cross-reactive humoral and cellular immunity in kidney transplant recipients is currently lacking. METHODS: The pre-existing, cross-reactive antibody B and T cell immune responses against SARS-CoV-2 in unexposed adults with kidney transplantation (Tx, n = 14) and without (non-Tx, n = 12) sampled before the pandemic were compared with 22 convalescent patients with COVID-19 (Cp) applying enzyme-linked immunosorbent assay and flow cytometry. RESULTS: In both unexposed groups, SARS-CoV-2 IgG antibodies were not detectable. Memory B cells binding spike (S) protein SARS-CoV-2 were detected in unexposed individuals (64% among Tx; 50% among non-Tx) and higher frequencies after infection (80% Cp). The numbers of SARS-CoV-2-reactive T cells were comparable between patients who had undergone Tx and those who had not. SARS-CoV-2-reactive follicular T helper cells were present in 61% of the unexposed cohort in both patients who had undergone Tx and those who had not. CONCLUSIONS: Cross-reactive memory B and T cells against SARS-CoV-2 exist also in transplanted adults, suggesting a primed adaptive immunity. The effect on the disease course may depend on the concomitant immunosuppressive drugs.


Asunto(s)
COVID-19 , Trasplante de Riñón , Adulto , Anticuerpos Antivirales , Humanos , Inmunoglobulina G , Trasplante de Riñón/efectos adversos , Pandemias , SARS-CoV-2
11.
Front Immunol ; 13: 816220, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35145522

RESUMEN

SARS-CoV-2 variants of concern (VOCs) can trigger severe endemic waves and vaccine breakthrough infections (VBI). We analyzed the cellular and humoral immune response in 8 patients infected with the alpha variant, resulting in moderate to fatal COVID-19 disease manifestation, after double mRNA-based anti-SARS-CoV-2 vaccination. In contrast to the uninfected vaccinated control cohort, the diseased individuals had no detectable high-avidity spike (S)-reactive CD4+ and CD8+ T cells against the alpha variant and wild type (WT) at disease onset, whereas a robust CD4+ T-cell response against the N- and M-proteins was generated. Furthermore, a delayed alpha S-reactive high-avidity CD4+ T-cell response was mounted during disease progression. Compared to the vaccinated control donors, these patients also had lower neutralizing antibody titers against the alpha variant at disease onset. The delayed development of alpha S-specific cellular and humoral immunity upon VBI indicates reduced immunogenicity against the S-protein of the alpha VOC, while there was a higher and earlier N- and M-reactive T-cell response. Our findings do not undermine the current vaccination strategies but underline a potential need for the inclusion of VBI patients in alternative vaccination strategies and additional antigenic targets in next-generation SARS-CoV-2 vaccines.


Asunto(s)
Vacuna nCoV-2019 mRNA-1273/inmunología , Anticuerpos Neutralizantes/sangre , Vacuna BNT162/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antivirales/sangre , Afinidad de Anticuerpos/inmunología , COVID-19/mortalidad , Proteínas M de Coronavirus/inmunología , Proteínas de la Nucleocápside de Coronavirus/inmunología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Fosfoproteínas/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunación
16.
Transplantation ; 105(10): 2156-2164, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-33988334

RESUMEN

BACKGROUND: The ability of transplant (Tx) patients to generate a protective antiviral response under immunosuppression is pivotal in COVID-19 infection. However, analysis of immunity against SARS-CoV-2 is currently lacking. METHODS: Here, we analyzed T cell immunity directed against SARS-CoV-2 spike-, membrane-, and nucleocapsid-protein by flow cytometry and spike-specific neutralizing antibodies in 10 Tx in comparison to 26 nonimmunosuppressed (non-Tx) COVID-19 patients. RESULTS: Tx patients (7 renal, 1 lung, and 2 combined pancreas-kidney Txs) were recruited in this study during the acute phase of COVID-19 with a median time after SARS-CoV-2-positivity of 3 and 4 d for non-Tx and Tx patients, respectively. Despite immunosuppression, we detected antiviral CD4+ T cell-response in 90% of Tx patients. SARS-CoV-2-reactive CD4+ T cells produced multiple proinflammatory cytokines, indicating their potential protective capacity. Neutralizing antibody titers did not differ between groups. SARS-CoV-2-reactive CD8+ T cells targeting membrane- and spike-protein were lower in Tx patients, albeit without statistical significance. However, frequencies of anti-nucleocapsid-protein-reactive, and anti-SARS-CoV-2 polyfunctional CD8+ T cells, were similar between patient cohorts. Tx patients showed features of a prematurely aged adaptive immune system, but equal frequencies of SARS-CoV-2-reactive memory T cells. CONCLUSIONS: In conclusion, a polyfunctional T cell immunity directed against SARS-CoV-2 proteins as well as neutralizing antibodies can be generated in Tx patients despite immunosuppression. In comparison to nonimmunosuppressed patients, no differences in humoral and cellular antiviral-immunity were found. Our data presenting the ability to generate SARS-CoV-2-specific immunity in immunosuppressed patients have implications for the handling of SARS-CoV-2-infected Tx patients and raise hopes for effective vaccination in this cohort.


Asunto(s)
COVID-19/inmunología , Terapia de Inmunosupresión , Trasplante de Órganos , SARS-CoV-2/inmunología , Adulto , Femenino , Humanos , Inmunidad Celular , Inmunidad Humoral , Memoria Inmunológica , Masculino , Persona de Mediana Edad , Linfocitos T/inmunología
19.
J Med Case Rep ; 14(1): 242, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33308254

RESUMEN

BACKGROUND: Developing therapeutic strategies for a SARS-CoV-2 infection is challenging, but first the correct diagnosis has to be made. Unspecific upper and lower respiratory tract symptoms can be misleading; hence, a nasopharyngeal swab test with a real-time reverse-transcription-polymerase chain reaction is of great importance. However, early viral clearing jeopardizes a sound diagnosis of COVID-19. CASE PRESENTATION: We report on two Caucasian patients who had negative pharyngeal swab tests at the onset of SARS-CoV-2 pneumonia. In one patient, the virus was not even detectable in bronchoalveolar lavage despite typical radiomorphologic changes. CONCLUSIONS: Negative PCR findings in both the pharynx and bronchoalveolar lavage do not exclude COVID-19 pneumonia. Computed tomography is a crucial diagnostic prerequisite in this context.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19 , COVID-19/diagnóstico , SARS-CoV-2/aislamiento & purificación , Anciano de 80 o más Años , Reacciones Falso Positivas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Tomografía Computarizada por Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...